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Tandem oxidation processes for the regioselective preparation
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Abstract—a-Hydroxyketones undergo MnO2-mediated oxidation, followed by in situ trapping with 2-pyridylamidrazone, to give
3-pyridyl-5-substituted 1,2,4-triazines in a one-pot procedure, which avoids the need to isolate the reactive a-ketoaldehyde inter-
mediates. By modifying this procedure to allow condensation prior to oxidation, the corresponding 6-substituted 1,2,4-triazines
were obtained. The preparation of a novel unsymmetrical 2,2 0-bipyridine using one of the pyridyl 1,2,4-triazines prepared herein
is also described.
� 2006 Elsevier Ltd. All rights reserved.
1,2,4-Triazines are an important class of nitrogen-
containing heterocycles with diverse applications in
medicine and agrochemistry and as ligands for a range
of metal ions.1,2 In addition, 1,2,4-triazines are versatile
synthetic building blocks from which a wide-range of
heterocyclic systems can be accessed via an inverse-
electron-demand Diels–Alder sequence.3–6 The use of
this methodology to prepare pyridines is particularly
valuable,3–5 and we have recently reported5 a micro-
wave (MW) variant of the Boger enamine procedure,4a

which allows the direct conversion of substituted 1,2,4-
triazines into highly functionalised pyridines and 2,2 0-
bipyridines via an inverse-electron-demand enamine
Diels–Alder/retro-Diels–Alder/elimination sequence5

(Scheme 1). We have also shown that substituted
triazines can undergo a one-pot cascade process invol-
ving inverse-electron-demand Diels–Alder/retro-Diels–
Alder/intramolecular-Diels–Alder reactions producing
diaza-polycycles6 (Scheme 1).

We next wished to apply the former procedure to pre-
pare a range of novel, unsymmetrical 2,2 0-bipyridines,
but in order to do this we required efficient access to
pyridyl-substituted triazines 1 and 2. Of the many
methods available to prepare triazines,1 the double
condensation of 1,2-dicarbonyl compounds with amidr-
azones developed by Neunhoeffer is one of the most
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straightforward. In this procedure, regio-isomeric
mixtures are often formed from unsymmetrical
diketones, although a-ketoaldehydes 4 normally give 5-
substituted 1,2,4-triazines.1 However, the high reactivity
of a-ketoaldehydes, especially alkyl-substituted examples,7

can present difficulties. We have recently shown that
manganese dioxide-based tandem oxidation processes
(TOPs) can be employed with a-ketoalcohols; for
example, in the presence of diamines, the intermediate
a-ketoaldehydes can be trapped to give heterocyclic
systems.8 The first objective of the present study, there-
fore, was to investigate the direct conversion of
a-hydroxyketones 3 into 3-pyridyl-5-substituted tri-
azines 1 by in situ trapping of the intermediate a-keto-
aldehydes 4 with the pyridyl-substituted amidrazone 59

(Scheme 2).

Preliminary studies were carried out using the commer-
cially available a-hydroxyacetophenone 3a (R = Ph)
with 2-pyridylamidrazone 5 in the presence of activated
manganese dioxide (Table 1). Initially, thermal condi-
tions were employed with added 4 Å molecular sieves
but the results were disappointing (entries i and ii). With
excess manganese dioxide, as is normally employed, the
reaction was slow (72 h) and triazine 1a was obtained in
only 9% isolated yield (contaminated by 2a, R = Ph;
1a:2a ca. 19:1). It appeared that amidrazone 5 was
undergoing oxidative decomposition under these condi-
tions and so the amount of MnO2 was decreased to one
equivalent: this change increased the yield of 1a to 27%,
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Table 1. Optimisation of the oxidation-trapping reaction of 3a to give triazine 1a

N
N

N

N

Ph

1a

Ph O

OH

3a

MnO2, 5

N

N
NPh

2a N

+

Entry Equiv MnO2 Conditions Time Isolated yield (%) Ratioa 1a:2a

i 9 CH2Cl2, reflux, 4 Å mol. sieves 72 h 9 19:1
ii 1 CH2Cl2, reflux, 4 Å mol. sieves 72 h 27b 19:1
iii 2 CH2Cl2, 55 �C, MWc 30 min 55 19:1
iv 1 CH2Cl2, 55 �C, MWc 30 min 70 19:1

v 1 CH2Cl2, 55 �C, MWc 15 min 60 19:1
vi 1 PhMe, 55 �C, MWc 30 min 70 19:1

a Determined by 1H NMR spectroscopy.
b 3a (26%) recovered; 65% recovered after 24 h.
c CEM Discover microwave reactor.
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although unreacted starting material and non-cyclised
hydrazone intermediates were also obtained. In order
to speed up the oxidation-trapping process (and mini-
mise amidrazone degradation), we moved on to study
the microwave-induced process (Table 1, entries iii–vi).
We were delighted to find that on repeating the reaction
using dichloromethane and 2 equiv of MnO2 in a
focused monomode microwave reactor at a fixed
temperature (55 �C) in a sealed vessel, the reaction was
complete in 30 min and adduct 1a was isolated in 55%
Table 2. One-pot preparation of 3-pyridyl-5-substituted-1,2,4-triazines 1a–ha

Entry a-Hydroxy ketone 3

i Ph O

OH

3a
Ph

ii

4-MeO-C6H4 O

OH

3b
4-Me

iii

4-NO2-C6H4 O

OH

3c
4-NO

iv

4-Br-C6H4 O

OH

3d
4-Br-

v
O

OH

O 3e O

vi
O

OH

S 3f S

vii

Me O

OH

3g
Me

viii O

OH

3h

a For a representative procedure see Ref. 11.
b Isolated yield based on the starting a-hydroxyketone 3.
c 1a:2a approx. 19:1.
d 1d:2d approx. 19:1.
e Hydrazone 6 (35%) was also isolated (see Scheme 3).
f 1h:2h approx. 4:1.
yield (entry iii). Using the same conditions but with
1 equiv of MnO2 the yield improved to 70% (entry iv);
changing the reaction time to 15 min resulted in a lower
yield (entry v) but replacing dichloromethane with tolu-
ene also gave a 70% yield in 30 min (entry vi).

With this success in hand, we went on to look at a range
of a-hydroxyketones 3a–h10 (Table 2). As can be seen,
this one-pot process proved successful with a number
of aromatic and heteroaromatic systems, the products
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1a–f being obtained in fair to good yields (51–76%), pre-
dominantly or exclusively as the required regioisomers
(entries i–vi).

Two aliphatic examples were also explored (entries vii–
viii): in these examples low yields of triazines 1g and
1h were obtained. In the case of the methyl substituted
example (entry vii), 35% of the hydrazone by-product
6 (R = Me) was also isolated, indicating the competitive
nature of the condensation process in this system.

This observation prompted us to investigate the one-pot
preparation of 3-pyridyl-6-substituted triazines 2 by an
initial condensation between hydroxyketone 3 and
amidrazone 5, giving intermediate adduct 6, followed
in situ by MnO2-mediated oxidation and subsequent
condensation to produce the required product 2
(Scheme 3).

Preliminary studies revealed that this approach shows
great potential (Table 3). Thus (entry i), condensation
of a-hydroxyacetophenone 3a with 2-pyridylamidrazone
5 followed by manganese dioxide oxidation–cyclisation
H2N
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H2N
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5 R N
N
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6

Step I

Scheme 3.

Table 3. One-pot preparation of 3-pyridyl-6-substituted 1,2,4-triazines 2a an

Entry Step I (condensation) Step II (oxida

i
Ph O

OH

3a

5 (2.0 equiv), PhMe,
55 �C, 1 h

MnO2, PhMe
reflux, 17 h

ii

Ph O

OH

3a

5 (2.0 equiv), PhMe,
55 �C, 1 h, degassed

MnO2, PhMe
reflux, 17 h

iii
O

OH
3h

5 (1.0 equiv), PhMe,
55 �C, 2 h, degassed

MnO2, AcOH
PhMe, reflux,

a For a representative procedure see Ref. 13.
b Isolated yield over complete sequence based on the starting a-hydroxyketo
c Using microwave conditions (2 h).
in refluxing toluene,14 gave 3-pyridyl-6-phenyl 1,2,4-tri-
azine 2a in 73% yield, although it was contaminated
by a small amount of the 5-phenyl isomer 1a (ca. 5%).
Somewhat surprisingly, it appears that this 5-phenyl
by-product arises from the aerial oxidation of a-
hydroxyacetophenone 3a, followed by condensation
with the resulting aldehyde 4a. However, by rigorously
degassing the reaction mixture and carrying out the pro-
cess under an inert atmosphere, the sequence proceeded
with total regioselectivity according to 1H NMR spec-
troscopy (entry ii). This sequence was then applied to
the cyclohexane-substituted a-hydroxyketone 3h, and
triazine 2h was obtained as a single regioisomer in
51% yield (73% using MW). Further studies are needed
to examine the scope of this procedure, but these pre-
liminary results, which involve both an aromatic and
an aliphatic a-hydroxyketone, indicate its potential.

Finally, to illustrate the value of the 1,2,4-triazines
prepared herein, 3-pyridyl-6-phenyl 1,2,4-triazine 2a
was converted into the novel, unsymmetrical 2,2 0-bipyri-
dine 715 using the one-pot methodology we developed
earlier5 (Scheme 4).
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In summary, we have developed improved procedures
for the regioselective conversion of a-hydroxyketones
3 into both 5-substituted- and 6-substituted-3-pyridyl
1,2,4-triazines via one-pot oxidative sequences with
in situ trapping using 2-pyridylamidrazone (and presum-
ably other substituted amidrazones would be equally
viable). A novel, unsymmetrical 2,2 0-bipyridine has also
been prepared. We are currently optimising this chemis-
try and exploring applications in natural product
synthesis.
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